Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).

نویسندگان

  • Grégoire Courtine
  • Roland R Roy
  • John Hodgson
  • Heather McKay
  • Joseph Raven
  • Hui Zhong
  • Hong Yang
  • Mark H Tuszynski
  • V Reggie Edgerton
چکیده

We hypothesized that the activation patterns of flexor and extensor muscles and the resulting kinematics of the forelimbs and hindlimbs during locomotion in the Rhesus would have unique characteristics relative to other quadrupedal mammals. Adaptations of limb movements and in motor pool recruitment patterns in accommodating a range of treadmill speeds similar to other terrestrial animals in both the hindlimb and forelimb were observed. Flexor and extensor motor neurons from motor pools in the lumbar segments, however, were more highly coordinated than in the cervical segments. Unlike the lateral sequence characterizing subprimate quadrupedal locomotion, non-human primates use diagonal coordination between the hindlimbs and forelimbs, similar to that observed in humans between the legs and arms. Although there was a high level of coordination between hind- and forelimb locomotion kinematics, limb-specific neural control strategies were evident in the intersegmental coordination patterns and limb endpoint trajectories. Based on limb kinematics and muscle recruitment patterns, it appears that the hindlimbs, and notably the distal extremities, contribute more to body propulsion than the forelimbs. Furthermore, we found adaptive changes in the recruitment patterns of distal muscles in the hind- and forelimb with increased treadmill speed that likely correlate with the anatomical and functional evolution of hand and foot digits in monkeys. Changes in the properties of both the spinal and supraspinal circuitry related to stepping, probably account for the peculiarities in the kinematic and EMG properties during non-human primate locomotion. We suggest that such adaptive changes may have facilitated evolution toward bipedal locomotion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells

Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...

متن کامل

Effects of spaceflight on rhesus quadrupedal locomotion after return to 1G.

Effects of spaceflight on Rhesus quadrupedal locomotion after return to 1G. Locomotor performance, activation patterns of the soleus (Sol), medial gastrocnemius (MG), vastus lateralis (VL), and tibialis anterior (TA) and MG tendon force during quadrupedal stepping were studied in adult Rhesus before and after 14 days of either spaceflight (n = 2) or flight simulation at 1G (n = 3). Flight simul...

متن کامل

Qualitative Comparison between Rats and Humans in Quadrupedal and Bipedal Locomotion

Bipedal (Bp) locomotion is one of the most characteristic motor behaviors in human beings. Innate quadrupedal (Qp) four-legged animals also often walk bipedally. The walking posture, however, is significantly different between the two. This suggests that although both have a potential to walk bipedally, however, the human has a body scheme suitable for Bp locomotion, probably its skeletal syste...

متن کامل

Humeral retractor EMG during quadrupedal walking in primates.

The mammalian humeral retractors latissimus dorsi, teres major and caudal parts of the pectoral muscles are commonly thought to contribute to forward impulse during quadrupedal locomotion by pulling the body over the supporting forelimb. While most electromyographic studies on recruitment patterns for these muscles tend to support this functional interpretation, data on muscle use in chimpanzee...

متن کامل

Development of Bipedal and Quadrupedal Locomotion in Humans from a Dynamical Systems Perspective

Locomotion is the movement of an organism from one place to another, often by the action of appendages such as flagella, limbs, or wings. In some animals, such as fish, locomotion results from a wavelike series of muscle contractions (The American Heritage® Science Dictionary, 2005). Walking is the act of traveling by foot; gait is the manner of walking; running is the act of traveling on foot ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 6  شماره 

صفحات  -

تاریخ انتشار 2005